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We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher
free-energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geo-
metrical frustration between the simplex-based fluid order and the crystal �J. A. van Meel, D. Frenkel, and P.
Charbonneau, Phys. Rev. E 79, 030201�R� �2009��. Here, we analyze the microscopic contributions to the
fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We
find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal
formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimen-
sions and to compare our observations with two recent theories �C. Song, P. Wang, and H. A. Makse, Nature
�London� 453, 629 �2008�; G. Parisi and F. Zamponi, Rev. Mod. Phys. �to be published��.
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Structural glasses form under conditions where, though
the thermodynamically stable state of the system is crystal-
line, the supersaturated fluid remains disordered. Instead of
nucleating crystals, the fluid phase becomes steadily more
viscous, until the microscopic relaxation processes become
slower than the experimental or simulation time scales. A
glass is then obtained. To avoid encountering a kinetic spin-
odal before falling out of equilibrium, good glass formers
should therefore be poor crystallizers �1�. Geometrical frus-
tration is one of the factors thought to slow the formation of
ordered phases and thus assist glass formation �2�. Simple
isotropic liquids are considered geometrically frustrated be-
cause the tetrahedron-based local order of the liquid cannot
pack as a regular lattice. This scenario contrasts with what
happens in a fluid of two-dimensional �2D� disks, where tri-
angular order is locally as well as globally preferred and
crystallization is particularly facile.

The initial formulation of geometrical frustration by
Frank considered the optimal way for kissing spheres inter-
acting via a Lennard-Jones model potential to cluster around
a central sphere �3�. Frank found the icosahedral arrange-
ment to be more energetically favorable than the cubic lattice
unit cells. Though the original argument relies on the ener-
getics of spurious surface effects �4�, mean-field solvation
corrections leave the result unchanged �5,6�. For hard
spheres, the icosahedron, which is the smallest maximum
kissing-number Voronoi polyhedron, is also the optimally
packed cluster. From the entropic standpoint the optimality
of the structure therefore remains. More recently geometrical
frustration has been couched in terms of the spatial curvature
necessary to permit a defect-free lattice packing of tetrahedra
�or, more generally, simplexes�, which are the smallest build-
ing block in a Delaunay decomposition of space �7,8�. This
polytetrahedral scenario ascribes the presence of icosahedra
to their singularly easy assembly from quasiregular tetrahe-
dra. Our recent study of four-dimensional �4D� crystalliza-
tion confirmed the simplex-based order in simple fluids as
the source of frustration. The 4D optimal kissing cluster,
which can also tile space in the densest known lattice pack-

ing, plays however no identifiable role in the liquid order �9�.
The observation that an optimal cluster, such as the icosahe-
dron, is not singular is in agreement with the careful exami-
nation of the local fluid structure �10,11�, and offers a rea-
sonable explanation for the limited amount of icosahedral
order identified in experiments �12–15� and simulations
�16,17� of supercooled fluids.

Geometrical frustration also contributes to the nucleation
barrier. In the absence of impurities or interfaces, crystalli-
zation proceeds through homogeneous nucleation in super-
saturated solutions, as was spectacularly observed in
container-less levitated metallic liquids �18�. According to
classical nucleation theory �CNT�, homogeneous nucleation
occurs through a rare fluctuation, whereby a crystallite that is
sufficiently large for the bulk free-energy gain to outweigh
the interfacial free-energy cost forms �19�. Crystallization
then spontaneously proceeds. The free-energy difference be-
tween the ordered and disordered phases is fairly well under-
stood microscopically in terms of the crystal packing effi-
ciency. But the interfacial free energy contains a geometrical
frustration contribution that is more challenging to interpret
�20�. Monodisperse hard spheres, the simplest system in
which to study these effects, can indeed be supercooled in
three dimensions �3D�, but they are notoriously bad glass
formers. Our earlier study, which found crystallization barri-
ers in 4D to be much higher than in equivalently supersatu-
rated 3D fluids �9�, suggest that 3D hard spheres are only
moderately geometrically frustrated. In this paper we im-
prove on this qualitative assessment: to quantify geometrical
frustration, we look at the dimensional trends and use bond-
order parameters and the fluid-hard-wall interfacial free en-
ergy as a reference. Equipped with a microscopic under-
standing of geometrical frustration, we examine some of its
consequences for 3D polydisperse spheres and consider how
hard-sphere crystallization evolves in higher dimensions. We
find crystallization to become very rare, as was previously
observed in systems of up to six dimensions �6D� �21�. This
rarity allows us to consider the consequences of the deeply
supersaturated fluid branch on jamming, and compare the
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jamming results with the predictions of two recent theories
�22,23�.

The plan of the paper is as follows. First, we complete the
phase diagram of five-dimensional �5D� and 6D hard
spheres, and use quantitative tools to describe the fluid and
crystal orders in the various dimensions. We then compute
the fluid-hard-wall interfacial free energy in 2D, 3D, and 4D,
in order to quantify the contribution of geometrical frustra-
tion to the fluid-crystal interfacial free energy. Finally, we
use these results to obtain the behavior of the free-energy
barrier to crystallization in higher dimensions.

I. METHODOLOGY

For convenience, in the rest of this paper the particle di-
ameter � sets the unit of length and the thermal energy kBT
sets the unit of energy. For hard interactions this choice can
be done without loss of generality, because entropy is the
sole contributor to the free energy.

Spheres become less efficient at filling space with increas-
ing dimension. Though with our choice of units the fluid
densities of interest � increase, the corresponding volume
fraction �

� � �Vd2−d = �
�d/2

��1 + d/2�2d , �1�

steadily decreases, because the volume of a d-dimensional
hard sphere of radius 1/2 in Rd, Vd2−d, decreases faster than
the crystal density increases. We report most quantities as
volume fractions, but we also at times use � if it simplifies
the notation.

A. Phase diagram

Because of computational limitations, 6D is the maximal
dimension for which the phase diagram can reliably be ob-
tained by simulation at this point. In a given dimension, in
addition to the fluid phase we consider the crystal phase pos-
tulated to be the densest and a less dense crystal for refer-
ence. The densest known close-packed structures in 5D and
6D are degenerate through layering, the same way that hex-
agonal close-packed and face-centered cubic �fcc� crystals
are degenerate through layering in 3D �24�. For convenience
we choose the most symmetric of these as order phases,
which are D5 in 5D and E6 in 6D respectively �25� �see
Appendix A�. As in 3D, the impact of this decision on the
phase diagram should be minimal �26�. With increasing di-
mensionality layered structures show a growing similarity in
their local two- and three-particle distributions, because lay-
ering affects only one of a growing number of spatial dimen-
sions. The choice of specific layered phase should thus have
but a small impact on the structural analysis.

In order to precisely locate the freezing point, we compute
the fluid and crystal hard-sphere equations of state �EoS�.
Constant number of particles N, volume V, and temperature
T Monte Carlo �MC� simulations �27� give the radial pair
distribution function g�r�, which once extrapolated at contact
is related to the EoS

P/� = 1 + B2�g�1+� , �2�

where P is the pressure and B2=Vd /2 is the second virial
coefficient �28�. A sufficient number of MC cycles are used
for the pressure to converge. Higher densities thus require
longer simulations, because microscopic relaxation becomes
sluggish. A minimum of 50 000 MC cycles are performed,
but up to ten times that amount is used when needed. Start-
ing configurations are obtained by slowly compressing the
system and by equilibrating at each density of interest along
the way. For the fluid compressed beyond the freezing point,
no crystallization is detected, which allows to thoroughly
sample the metastable fluid, up until the microscopic relax-
ation becomes longer than the simulation time. The EoS are
obtained for systems of 2048 �D4�, 4096 �4D fluid and A4�,
3888 �5D fluid and D5�, 14400 �A5�, 2048 �D6�, 10000 �6D
fluid�, and 17496 �E6� particles. To locate the fluid-crystal
coexistence regime, we determine the absolute Helmholtz
free energy per particle f of the crystal using the Einstein-
crystal method �29� at a reference point: for D4 and A4 crys-
tals we use �=0.37, for D5 and A5 �=0.21, and for D6 and
E6 �=0.12. The excess free energy at other crystal densities
is then obtained by thermodynamic integration of the EoS
�27�. To obtain the fluid free energy the EoS is integrated
from the ideal gas limit. The chemical potential

���� = f + P/� �3�

gives the fluid-crystal coexistence pressure Pcoex and �coex by
finding where it is equal for both phases, i.e., ���P�=0. The
densities of the coexisting phases is then obtained from con-
stant N, Pcoex, and T MC simulations. This approach is for-
mally equivalent to the common tangent construction, but we
find it to be numerically more efficient.

B. Order parameters

To characterize the structure of the fluid and crystal
phases we need a criterion to quantify local ordering. Studies
in 2D and 3D suggest that order parameters derived from
rotationally invariant combinations of the m different spheri-
cal harmonics Yl

m of degree l might suffice �30–32�. Here, we
consider second- and third-order invariants, which are sensi-
tive to the degree of spatial orientational correlation of the
vectors that join neighboring particles. For a proper choice of
l the �renormalized� invariant’s �absolute� value is one for a
perfect crystal and close to zero for a perfectly isotropic
fluid. Though a 4D canonical spherical harmonics basis
��33�, Sec. 9.6� and both its second- and third-order invari-
ants �34� are known, in higher dimensions it rapidly becomes
analytically intractable to identify a basis composed of
weight vectors for the representation of SO�d� �35�. It is
therefore more convenient to rewrite the invariants as poly-
nomials of the vector inner products. For the second-order
invariants, one simply uses the Gegenbauer polynomials
Gl

d/2−1 obtained from the sum rule ��36�, Thm. 9.6.3�. For
instance, the sum over the �l+1�2 4D spherical harmonics for
unit vectors r̂i can be rewritten as
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Gl
1�r̂1 · r̂2� =

2�2

�l + 1�2 �
m=1

�l + 1�2

Yl
m�r̂1�Yl

m�r̂2� . �4�

The second-order local bond-order correlator ql�i , j� is then
obtained by summing over the N�i� and N�j� nearest neigh-
bors of particles i and j conveniently chosen to be within a
distance equal to the first minimum of g�r�. By letting the
indices 	 and 
 run over these neighbors we find �9�

ql�i, j� = ql�i� · ql�j� =

�
	=1

N�i�

�

=1

N�j�

Gl
d/2−1�r̂i	 · r̂ j
�

N�i�N�j�
. �5�

This two-particle second-order invariant ql�i , j�, rather than a
single-particle ql�i , i� or a global second-order invariant Ql
= ��i� jN�i�N�j�ql�i , j��1/2 /�iN�i�, is known to be a reliable
basis for the identification of individual crystalline particles
in 3D �31� and 4D �9�, and allows for a more sensitive analy-
sis of the fluid structure.

We now develop an approach to obtain third-order rota-
tionally invariant polynomials w̃l analogous to the Gegen-
bauer polynomials. This approach, like the one described
above for the second-order invariant, has the important ad-
vantage that we do not need prior knowledge of a canonical
spherical harmonics basis. A classical theorem due to Weyl
says that any polynomial in m sets of variables X1 , . . . ,Xm
�Rd invariant under the diagonal action

g · f�X1, . . . ,Xm� = f�gX1, . . . ,gXm� for g � SO�d�

can be expressed in terms of the inner products �Xi ,Xj� and
the determinants det�Xi1

. . .Xid
�. For third-order invariants

�m=3� in d�4, all the determinants are zero, and we are
able to write the invariant polynomial in X= �X1 , . . . ,Xd�, Y
= �Y1 , . . . ,Yd�, and Z= �Z1 , . . . ,Zd� in terms of the various in-
ner products x= �X ,X� , y= �Y ,Y� , z= �Z ,Z� and a
= �X ,Y� , b= �X ,Z� , c= �Y ,Z�.

Let f be a polynomial in X ,Y ,Z. Suppose that f is invari-
ant under the diagonal action of SO�d�. Then there is a poly-
nomial p�x ,y ,z ,a ,b ,c� such that

f�X,Y,Z� = p�x,y,z,a,b,c� .

Lemma I.1. Suppose f is homogeneous of degree l in X, Y,
and Z separately, and is therefore homogeneous of degree 3l
overall. Then we have

p��2x,�2y,2z,��a,�b,�c� = ����lp�x,y,z,a,b,c� ,

and thus p is homogeneous of degree 3l /2 overall.
Let

DX�p� � 2d
�p

�x
+ 4x

�2p

�x2 + 4a
�2p

�a � x
+ 4b

�2p

�b � x
+ 2c

�2p

�a � b

+ y
�2p

�a2 + z
�2p

�b2 ,

DY�p� � 2d
�p

�y
+ 4y

�2p

�y2 + 4a
�2p

�a � y
+ 4c

�2p

�c � y
+ 2b

�2p

�a � c

+ x
�2p

�a2 + z
�2p

�c2 ,

DZ�p� � 2d
�p

�z
+ 4z

�2p

�z2 + 4b
�2p

�b � z
+ 4c

�2p

�c � z
+ 2a

�2p

�b � c

+ x
�2p

�b2 + y
�2p

�c2 .

Lemma I.2. The operators above satisfy

�X
2 p�x,y,z,a,b,c� = �DXp��x,y,z,a,b,c� ,

and similarly for Y and Z. In particular if f is harmonic in X,
Y, and Z, then DX�p�=DY�p�=DZ�p�=0.

The proof is an exercise in using the chain rule.
Using Lemmas I.1 and I.2, we set up a system of equa-

tions for the coefficients of the polynomial p�x ,y ,z ,a ,b ,c�
corresponding to a SO�d� invariant polynomial f�X ,Y ,Z� of
degree l and harmonic in each of X, Y, and Z separately. We
can solve this system of equation, and once we choose the
normalization, say p�1,1 ,1 ,0 ,0 ,0�=1, there is a unique so-
lution. Setting x=y=z=1 restricts the obtained function on
the unit sphere. We call the resulting function w̃l

d�a ,b ,c�.
Examples are given in Appendix B. For the reader cognisant
of representation theory, note that wl

d�X ,Y ,Z�= w̃l
d�a ,b ,c�

generates the one-dimensional copy of the irreducible repre-
sentation in the triple tensor product Hl�Sd−1� � Hl�Sd−1�
� Hl�Sd−1�.

As in the second-order case, those polynomials allow us
to rewrite the third-order local bond-order correlator Wl�i� up
to a dimension-dependent multiplicative constant cl

d

Wl�i� = cl
d

�
	,
,�

N�i�

w̃l
d�r̂i	 · r̂i
, r̂i	 · r̂i�, r̂i
 · r̂i��

2d−2�N�i��3�ql�i,i��3/2 . �6�

In 3D and 4D, the constant cl
d can be set by comparing with

the expression available in the literature. In higher dimen-
sions, we choose the normalization for which the polynomial
equals unity when evaluated on three orthogonal unit vectors
i.e., cl

dw̃l
d�0,0 ,0�=1. Note that because of the rotational sym-

metry, triplets with permuted indices can be summed only
once by correcting for the multiplicity. This simplification
offers an important computational advantage. Though the use
of rotationally invariant polynomials for the computation of
the bond-order parameters is primarily used for analytical
convenience, it is also worth noting that for large l and at low
densities, it is computationally more efficient than the stan-
dard spherical harmonics decomposition, and that their alge-
braic simplicity minimizes the risks of error at the implemen-
tation stage.

C. Wall cleaving surface tension

The 2D, 3D, and 4D hard-sphere fluid-hard-wall interfa-
cial free energy �f−w is calculated through MC simulation
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using the higher-dimensional generalization of an earlier
thermodynamic integration scheme �37�. We start from a sys-
tem periodically confined by both sides of a hard wall per-
pendicular to the x axis and make the wall gradually more
penetrable until the bulk system is obtained. Confinement is
achieved by introducing the auxiliary Hamiltonian

H� = �
i,j

N

VHS�rij� + ��
i=1

N

Vw�xi� , �7�

where VHS is the hard-core exclusion between hard spheres
and Vw is the penetrable wall potential

Vw�x� = 	exp�− 2x� if 
x
 � �/2
0 otherwise

� �8�

for a sphere a distance x from the wall. This truncated expo-
nential function is known to provide a high numerical accu-
racy route for �f−w computation �37,38�. When the coupling
parameter �=� hard spheres are confined by a hard wall,
while for �=0 the bulk fluid limit is recovered. The interfa-
cial free energy is obtained by Kirkwood integration

�f−w =
1

2A
�

0

�

d� �H�

��
�

�

, �9�

where A is the area of a single side of the wall. In practice
the integral is solved using a 21 point Gaussian-Kronrod
formula in a finite interval �� �0,�max� with �max chosen to
arbitrarily closely approximate a hard wall.

D. Generalized classical nucleation theory

Classical nucleation theory �CNT� �19� considers contri-
butions from chemical potential difference between the bulk
phases and the fluid-crystal interfacial free energy �f−x of a
spherical crystallite to obtain a free-energy functional

�G�n� = Ad�n/�x��d−1�/d�f−x − n�� , �10�

of the number of particles n in the crystallite. The functional
further depends on the crystal density �x at the supersatu-
rated fluid pressure and on a geometrical prefactor Ad. For
hard spheres Ad=Sd−1Vd

1/d−1, where Sd−1=dVd is the surface
area of a d-dimensional unit sphere. The resulting barrier
height at the critical cluster size n� is

�G��n�� =
�d − 1�d−1�d/2

��d/2 + 1�2d

�f−x
d

�x
d−1��d−1 , �11�

and in the high-dimensional limit the barrier asymptotically
approaches

�G��n�� � �2�ed�d/2 �f−x
d

�x
d−1��d−1 . �12�

The rate of nucleation per unit volume k is then k
=� exp�−�G��, where � is a kinetic prefactor proportional to
the diffusion coefficient in the fluid phase �32�. The kinetic
prefactor has a weak dimensionality dependence that we do
not consider here. Though schematic, this level of theory is
sufficient to clarify the contribution of geometrical frustra-

tion to the crystallization barrier through an analysis of �f−x.
Within the CNT framework geometrical frustration between
ordered and disordered phases should lead to a relatively
large �f−x, and thus to a high crystallization free-energy bar-
rier. On the contrary, geometrically similar phases should
have small �f−x and �G��n��.

II. RESULTS AND DISCUSSION

A. Phase diagram and jamming

The computed fluid EoS agrees with earlier 4D �9�, 5D
�28,42–44�, and 6D �45� simulation results as well as the 5–4
Padé approximants of the virial expansion �28,46� �Fig. 1�.
Small deviations are only observed at the highest densities,
where the expansion is less accurate �28,45�. Crystal phase
EoS for the D4 and D5 lattice geometries in 4D and 5D,
respectively, were first obtained from simulation in the early
1980s, but without reference free energies �21,42�, and we
are not aware of any 6D simulation results. As expected from
free-volume arguments, the densest known lattice is the
phase with the lowest pressure at densities where it is me-
chanically stable, and is the most free energetically favorable
of the ordered phases. Assuming that the crystallization ki-
netics is controlled by the free-energy barrier height, the
most stable ordered phase should be the only relevant one for
hard spheres. The generation of crystallites with other sym-
metries is only possible at much higher pressures and with a
smaller thermodynamic drive. The scaling of the fluid-crystal
interfacial free energy with pressure suggests that neither
phase would have a significant advantage over the other from
that respect �cf. Sec. II D�.

The 5D and 6D fluid-crystal coexistence conditions along
with the earlier 3D �41� and 4D �9� results are reported in
Table I. Skoge et al. offered upper bounds to the 4D and 5D
coexistence regimes by using the pressure of the fluid at the
density at which the simulated Dd crystal becomes mechani-
cally unstable as an estimate of coexistence pressure Pcoex

�21�. A more accurate estimate of Pcoex can be obtained from
the same data by using instead a quasi-Maxwell construction
around the limit of mechanical stability �47�. We include the
results of this last analysis and the coupled fluid scaled-
particle theory �SPT� and crystal cell theory �CT� coexist-
ence determination �40� in Table I as well. To the best of our
knowledge, density functional theory �DFT� coexistence pa-
rameters have only been reported for the nonequilibrium 4D
fluid-A4 pair of phases �48�, which does not lend itself to a
meaningful comparison with simulations. Finken et al. do
refer to DFT coexistence calculations, but do not report their
results for 4D to 6D �40�.

Our MC results are at least an order or magnitude more
precise than the estimates from Ref. �21�, which permits a
clearer assessment of the SPT/CT predictions. The SPT/CT
analysis correctly captures certain dimensional trends. For
instance, the relative difference in crystal and fluid volume
fraction at coexistence ��coex /�x, which is thought to go to
unity for large dimensions �40�, does increase appreciably
from below 10% in 3D to over 20% in 6D. And the crystal
volume fraction at coexistence �x decreases relatively faster
than the close-packed volume fraction �cp, which leaves the
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phase diagram dominated, in percentage of the accessible
densities, by the ordered phase �49�. Finken et al., incorrectly
implemented the common tangent construction �40�, but
once corrected, the SPT/CT predictions are relatively close
to the simulation results �see Table I�. SPT shows fairly good
agreement with the fluid EoS, and, as expected from the

third-order virial coefficient, overshoots the fluid pressure at
high densities �40� �see Fig. 1�. CT however significantly
underestimates the crystal pressure near coexistence and the
effect does not go away with dimension. The high compress-
ibility of hard-sphere crystals near the limit of mechanical
stability is a collective effect that is not captured by the
mean-field nature of the theory. The cancellation of errors
leaves SPT/CT coexistence densities reasonably on target,
but SPT/CT overestimates the width of the coexistence den-
sities and the coexistence pressure. It is unclear if this effect
vanishes with dimension.

It is interesting to note that Pcoex does not change mono-
tonically with dimension, but goes through a minimum in
4D. The nonmonotonic behavior of Pcoex might be due to
D4’s particularly well-suited nature to fill 4D Euclidian
space. A D4 lattice can be generated by placing a sphere in
each of the voids of a 4D simple cubic lattice. These new
spheres are equidistant to the ones on the simple cubic frame,
so the resulting lattice is twice denser. The corresponding 3D
construction D3

�, or body-centered-cubic lattice, packs much
less efficiently, because the simple cubic frame needs to be
extended to insert the new spheres. Though D4 does not ap-
pear singular in the dimensional trend of dense packings
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FIG. 1. �Color online� Monte Carlo EoS of the fluid and the two densest known ordered phases in 4D �9� �a�, 5D �c�, and 6D �d�
computed at constant V �filled symbols� and constant P �open symbols�, with Padé approximants of the virial expansion for the fluid �28�,
and the Speedy fits to the crystal phase results �39� �solid lines�. Insets give �� and the common tangent construction for determining
coexistence between the fluid and the densest crystal phase. The additional panel for 4D �b� contrasts MC and SPT/CT EoS as well as the
resulting coexistence determination �inset�.

TABLE I. Coexistence parameters from Monte Carlo simula-
tions compared with previous simulation estimates �see text� and
the corrected SPT/CT results �see text�. The volume fraction of the
densest known lattice �cp is also included for Ref. ��25�, Chap 1.
Sec. 1.5�.

d Pcoex �coex �f−�x

Modified
Ref. �21�

�f−�x

Corrected
SPT/CT

�40�
�f−�x �cp

3 �41� 11.564 17.071 0.494–0.545 0.741

4 �9� 9.15 13.7 0.288–0.337 0.29–0.35 0.29–0.39 0.617

5 10.2 14.6 0.174–0.206 0.18–0.22 0.17–0.24 0.465

6 13.3 16.0 0.105–0.138 0.10–0.16 0.373
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��25�, Chap. 1, Sec. 1.5�, its specificity might simply be over-
shadowed by other dimensional trends to which Pcoex is less
sensitive. We therefore conjecture that the nonmonotonic co-
existence pressure is a symmetry signature that should also
be present in 8D, 12D, 16D, and 24D, where other singularly
dense lattices are known to exist.

Another noteworthy observation concerns the high pres-
sure limit of the fluid EoS. The fluid results presented in this
paper are only for systems in equilibrium or in metastable
equilibrium, i.e., the initial configurations are prepared in the
fluid state and the simulations are run much longer than the
fluid microscopic relaxation time scale, though much shorter
than the nucleation time scale. But because no crystallization
takes place on the simulation time scale, only the growing
microscopic relaxation time scale limits the range of densi-
ties can be reached in simulations. The EoS can thus ob-
tained for supersaturated systems at much higher pressures
than in 3D �see Sec. II E�. We extract the infinite-pressure
compression limit of the densest supersaturated fluid point
on the EoS from the free-volume functional form for pres-
sure PfV suggested in Ref. �50�,

PfV��� =
�

Vd2d�1 − ��/�fV�1/d�
. �13�

This functional form, which is supported by the analysis of
Parisi and Zamponi �23� for 4D fluids, corresponds to a non-
equilibrium compression so rapid that no microscopic relax-
ation can take place. Because the microscopic relaxation be-
comes increasingly slow at high fluid densities, it
approximates the compression algorithm that Ref. �21� used
to obtain the volume fraction of the maximally random
jammed state �MRJ. The volume fractions of the disordered
jammed system corresponding to the densest equilibrated
fluid obtained by solving for �fV are indeed in very good
agreement with those obtained by direct nonequilibrium
compression �see Table II�. A recent statistical mean-field
theory of jamming that shows a surprisingly high accuracy
with the experimental and simulation �MRJ in 3D �22�, would
be expected to perform similarly well if not better when di-
mensionality is increased, due to the growing number of
nearest neighbors. On reproducing the arguments of Ref.
�22� for higher dimensions �see Appendix C�, we find that
though the accuracy is still good, it is not as high as for 3D.
The propagated relative error of the statistical mean-field
treatment is about 5–10 %, which suggests that the high ac-
curacy of the 3D results of Ref. �22� is fortuitous or is par-

ticularly sensitive to the choice of scaling assumptions. In
contrast, the mean-field treatment based on the replica
method offers predictions that are more consistent with the
simulation results �23�. The dimensional trends are more
similar, and the simulation results are slightly smaller than
the theoretical predictions, which is precisely where they are
predicted to be �23�.

B. Bond-order correlators

Skoge et al., considering the radial pair distribution func-
tion g�r�, found that higher-order unconstrained spatial cor-
relations vanish with increasing system dimension �21�. In
accordance to the “decorrelation principle” �51�, we also ex-
pect orientational correlations of order l, gl�r�, to decay more
rapidly when the dimension increases. As seen in Fig. 2, in
2D the hexatic signature gives rise to long-ranged orienta-
tional correlations on a length scale that diverges on ap-
proaching coexistence �52,53�; in 3D the orientational order
stretches over a couple of particle radii, but stays finite even
in the supersaturated regime; and in higher dimensions the
correlations keep decaying, as can be assessed from the
height ratio of the second to the first peak of g6�r� in Fig. 2.
Note that a similar behavior is observed for all l considered,
but l=6 has the advantage of capturing the crystal symmetry
for all dimensions.

The authors of Ref. �21� remarked that the number of
particles counted in the first peak of g�r� for supersaturated
fluids matches the number of kissing neighbors in the densest
known lattice phase for a given dimension. They hypoth-
esized that disordered packings in higher dimension might
thus be built of deformed crystal unit cells, in contrast to the
three-dimensional case where “icosahedral” order was
thought to dominate the packing. The distributions of local
bond-order correlators, which shows how the relative crystal

TABLE II. Volume fraction of the maximally random jammed
states obtained from free-volume extrapolation �MRJ

fV , direct com-
pression �21� �MRJ

comp, an extension of the statistical mean-field ap-
proach of Ref. �22� �MRJ

stat , and the replica method mean-field ap-
proach �23� �MRJ

rep .

d �MRJ
fV �MRJ

comp �21� �MRJ
stat �MRJ

rep �23�

4 0.47 0.46 0.43 0.49

5 0.31 0.31 0.28 0.33

6 0.21 0.20 0.17 0.22
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FIG. 2. �Color online� Impact of dimensionality on the decay of
orientational order. Top: second to first peak ratio of the radial de-
cay of the orientational order parameter g6�r� at fluid coexistence.
The line is a guide to the eyes. Bottom: decay of g6�r� in the fluid
near the hexatic phase in 2D and at coexistence in 3D and 4D. The
5D and 6D plots �not shown� are qualitatively similar to the 4D
results.
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and fluid local orders evolve with dimensionality paint a dif-
ferent picture �see Fig. 3�. Both the second- and third-order
invariants in 4D to 6D, capture no significant overlap be-
tween the liquid and the crystal local bond-order parameters,
in contrast to 2D and 3D where the bond-order distributions
overlap significantly �54�. Moreover, the distinction between
the fluid and crystal phases increases with dimension, which
suggest that the fluid and crystal local orders are just as or
more distinct with increasing dimensionality, not less �55�. In
4D, where the maximally kissing cluster 24-cell �56� is also
the unit cell of the crystal, but is not a simplex-based struc-
ture, no hint of the crystal order in the fluid is captured by

the bond-order distribution �Fig. 3� �9�. For a simplex-based
cluster to have as many nearest neighbors within the first
peak of g�r� as in the crystal, the first neighbor spheres can-
not all be kissing the central sphere at the same time, but
have to fluctuate in and out of the surface of the central
sphere. This variety of possible configurations is what broad-
ens the first peak of g�r� and by ricochet its second peak as
well �21�. Though they are harder to illustrate geometrically,
similar phenomena are expected in higher dimensions. The
bond-order distribution is therefore fully consistent with a
fluid structure dominated by simplex-based order, but not
with the presence of deformed crystal unit cells. This clear
separation in local order also suggests that for dimensions
greater than three fluid configurations should be easier to
distinguish from the partially crystalline or polycrystalline
systems that can be observed in 3D compression studies
�57�.

C. Fluid-hard-wall interfacial free energy

The local bond-order distributions indicate that the hard-
sphere fluid order resembles more the crystal order in 3D
than in higher dimensions. Because of the purely entropic
nature of hard-sphere systems, microscopic geometry should
have a clear thermodynamic signature on quantities such as
the fluid-crystal interfacial free energy �f−x. We will get back
to this point in Sec. II D. We first consider the behavior of
the fluid-hard-wall interfacial free energy �f−w, which is
easier to interpret microscopically and is a limit case for the
fluid-crystal geometrical frustration in all dimensions. From
the fluid point of view, both the hard wall and the crystal
plane exclude configurations containing spheres less than a
radius away from the hard surface, but the crystal has addi-
tional free-volume crevasses to explore.

The fluid-hard-wall interfacial free energy is an equilib-
rium quantity that, unlike the fluid-crystal interfacial free en-
ergy, is well defined at all densities where the fluid is stable.
An ideal gas has no fluid-hard-wall interfacial free energy,
but the low-density limit of spherical particles that exclude
volume is �f−w= P /2+O��2�=� /2+O��2�, because of the
PV work required to exclude particles from the surface of the
hard wall. At higher densities, just like a surfactant reduces
the surface tension by occupying part of the interfacial area,
the presence of particles at the interface reduce the entropy
cost for the other particles and partly offsets the increase in
opposing bulk pressure. An exact expansion gives �61–63�

�f−w =
P���

2
− B�2�2 − B�3�3 − B�4�4 − O��5� , �14�

where the first few surface virial coefficients B�i are com-
puted for hard spheres in all dimensions in Appendix D.

The virial expansion can be contrasted with the SPT and
the “mechanical” expressions for �f−w. It has already been
noted that 3D SPT, captures the first term in the virial expan-
sion exactly and is within a few percent of the next order
term �63�. This seems to be the case for all odd dimensions.
For even dimensions, though SPT captures the low-density
pressure behavior correctly, it is off already for B�2. In 2D
SPT gives B�2=� /8, while the correct value is 1/3. Even
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FIG. 3. �Color online� Distributions of second- �a� and third-
order �b� l=6 invariants for dense crystal phases and the fluid. With
increasing dimension the fluid and crystalline local bond-order pa-
rameters become increasingly distinct.
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when using a precise expression for the pressure, SPT does
not capture the inversion of �f−w

coex from 3D to 4D �see Table
III�. It has also been pointed out that the “mechanical” result
of Kirkwood and Buff with a Fowler-type approximation for
the two-point correlation �64,65� �see also Ref. ��66�, Sec.
4.4�� correctly captures the first surface virial coefficient in
3D �67�. Higher order terms contain surface effects that the
simple decorrelated approximation cannot capture, which ex-
plains why it is about 60% off for B�3 in 3D, predicting
B�3=5�2 /96 though the exact value is 149�2 /1680. One
should therefore take quantitative �f−w predictions of those
two approximations with a grain of salt.

To better understand the density dependence of �f−w, we
remove its trivial pressure contribution and obtain the change
in fluid volume per unit of wall area

�vA��� �
�f−w���

P���
. �15�

Using the standard pressure virial coefficients Bi, we expand
�vA to second order in density

�vA��� =
1

2
− B�2� + �B2B�2 − B�3��2 + O��3� . �16�

For 3D hard spheres B�4 has been evaluated numerically
�63�, so the expansion can be carried to the next order. As
expected, the initial slope of �vA��� is always negative �see
Table V�. The coefficient of �2, which is initially negative,
changes sign between 3D and 4D. Because the �2 coefficient
is small in 3D and 4D, the next order coefficient is more
significant and indeed B�4 markedly improves agreement
with 3D MC results. Figure 4 shows that theory and simula-
tions results nearly coincide at low density, which validates
the current simulation methodology and the latest 3D results
�59,68�. For 3D the match with theory extends close to the
coexistence limit. Only one or two additional coefficients
would probably be needed to capture the full curve with
simulation accuracy at coexistence.

Based on the physical interpretation of �vA, we expect the
change in fluid volume to monotonically decay to a positive
constant at high densities. By breaking the translational sym-
metry, the introduction of a hard wall perturbs the fluid order
to some extent. We also expect a plateau to develop on ap-
proaching that limit, because the high-density structure of the
supersaturated fluid varies little. But it might only be pos-

sible to observe this plateau at high fluid densities, in the
supersaturated regime. In 2D high-density reliable results are
technically difficult to obtain. The possible presence of an
hexatic phase at high densities commands very large system
sizes, because the wall favors the local crystal order and
pushes defects away from the interface. In 3D rapid wall-
induced crystallization occurs before a significant degree of
saturation is reached �37,59,60,68,69�. In d�3 however the
hard interface does not accommodate a regular packing of
simplexes, unlike in lower dimensions. We therefore expect
heterogeneous crystallization to be sufficiently slow to study
�f−w in the dense fluid regime by simulation. Though 4D �vA
has not yet saturated in Fig. 4, the results do suggest a slow-
down of the decrease. Unfortunately, the higher-dimensional
system sizes required to further clarify this point are cur-
rently beyond our computational reach.

Indirect evidence nonetheless supports the saturation sce-
nario. For crystals, saturation of �vA is similar to the cell
theory that was successfully applied in 3D for �f−w �60�. The
gap that must be opened to insert a plane along a given cut
through a packed crystal is the high-density limit of 2�vA,
where the factor of 2 accounts for the two interfaces that are
created by wall insertion. Published crystal-wall interfacial
free energy �x−w simulation results for various faces of the
fcc crystal �59,60� allow to extract the corresponding �vA���.
The lower panel of Fig. 4 shows that, within the error bars,
the simulation results follow pretty closely this simple satu-
ration scaling. The toy model also rationalizes the “broken
bond” and anisotropy ratios of Ref. �60�. Because the inter-
facial free energy between the fcc �111� plane and a hard
wall is tiled exclusively with 2D simplexes, which is similar
to a 3D high-density fluid-hard-wall interface, a similar �vA
saturation is expected. This prediction can be checked by
reanalyzing the recent simulations of jamming in confine-
ment �70�. Desmond and Weeks considered how the close-
packed density of bidisperse spheres is affected when the

TABLE III. Fluid-crystal and fluid-hard-wall interfacial free en-
ergies at coexistence from simulations and SPT �40,60�. The col-
umn SPT1 is the SPT interfacial tension with SPT pressure, and the
column SPT2 is the SPT interfacial tension calculated using the MC
pressure.

d �f−x
coex �f−w

coex SPT1�f−w
coex SPT2�f−w

coex �f−x
coex /�f−w

coex

3 0.557�59� 1.98�1� 2.30�60� 1.75 0.28

4 1.0 1.96�2� 2.53�40� 1.89 0.53

5 2.93 2.07

6 4.05 3.24
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FIG. 4. �Color online� Top: additional fluid volume per unit area
of surface �vA=�f−w / P from Monte Carlo simulations and the Padé
approximant equation of state �28,58� �points� compared with the
virial expansion of Eq. �16� �lines�. Bottom: Comparison of �x−w / P
from published simulation data �59,60� and the Speedy equation of
state �39� �points� with the cell-like theory �see text� for different
orientations of the 3D fcc crystals �lines�.
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distance between two confining hard walls is changed. The
scaling quantity C they extract can be re-expressed as the
additional fluid volume per wall surface area �vA��MRJ�
=C�MRJ /2.8, where the numerical prefactor takes into ac-
count the presence of two interfaces and rescales the diam-
eter of the larger spheres to unity. In 3D this gives
�vA��MRJ��0.054, which is lower than the fcc �111� limit
for monodisperse spheres of 0.091. It is qualitatively ex-
pected that a bidisperse system have a reduced �vA, because
the smaller spheres do not need to be pushed as far back
from the interface as the larger spheres �71,72�.

How the high-density limit of �vA changes with dimen-
sion dictates whether the free-energy barrier to nucleation
vanishes or not in high dimensions. From the geometrical
frustration analysis, we have identified the simplex as the
dominant geometrical structure in high-density fluids. It is
therefore reasonable to expect that the dominant structure
near a hard interface be a truncated simplex. Obviously the
fluid interface does not exclusively contain truncated sim-
plexes, so we further assume that simplexes are representa-
tive of the interface, and thus dominate the volume loss. The
high-density limit of �vA is then the distance that a vertex
sphere needs to be pushed out from the other spheres in the
simplex for a tangent plane to be inserted. For 2D, this sce-
nario is depicted in Fig. 5 and the details of the general
calculation are given in Appendix E. Within this approxima-
tion �vA monotonically increases with dimension, but is
bounded by 1 /2−�2 /4�0.146. In high dimensions, �f−w

coex

does not therefore asymptotically vanish, but increases due
to the growing Pcoex.

D. Fluid-crystal interfacial free energy

Our previous crystallization study of 4D hard spheres
gives values for �f−x that increase with fluid supersaturation
�or, equivalently, pressure� �9�. These interfacial free ener-
gies are more than twice as large as for 3D hard spheres at
comparable supersaturation �32�. Even taking into account
the slightly different interfacial densities, the gap is large,
justifying our earlier claim of increased geometrical frustra-

tion in 4D �9�. To allow for a more quantitative comparison,
we consider the system at coexistence, where the equilibrium
fluid-crystal interfacial free energy �f−x

coex is unambiguously
defined.

Crystallization-derived �f−x for 3D hard spheres have
been corrected for finite-size effects to obtain �f−x

coex �73�. The
effective critical cluster sizes contain at most a few spherical
shells and the resulting strongly curved crystallite leads to a
large internal Laplace pressure. The resulting loss of free
volume per particle is compounded by the relatively large
compressibility of higher-dimensional crystals near coexist-
ence, increasing the free-energy cost of forming the inter-
face. Just like �f−w increases with density, however, the non-
equilibrium fluid-crystal interfacial free energy for
supersaturated fluids should be larger than �f−x

coex, due to the
overall increase in bulk pressure. Because �vA has probably
not yet saturated, it is difficult to get a precise estimate of
this effect, but it is of the right magnitude to explain the
change of �f−x with pressure in both 3D and 4D. Which of
the crystallite finite size or the increase in fluid pressure
dominates the nonequilibrium �f−x behavior cannot be re-
solved here. But to first order, through the use of the Tolman
“ansatz,” they both suggest that the interfacial free energy
depends linearly on supersaturation �� �74�. This scaling,
though microscopically inaccurate and therefore only used
on an ad-hoc basis �75�, showed a relative success in 3D
�73,76�, and gives �f−x

coex�1.0 for 4D hard spheres. In spite of
its crudeness, the result is sufficiently precise to interpret the
thermodynamic consequences of geometrical frustration, be-
cause the equivalent quantities in 3D are known with high
accuracy �59,77�.

To a first approximation we would expect the fluid-crystal
interfacial free energy to scale linearly with the fluid-hard-
wall quantity if geometrical frustration were constant in all
dimensions, because the depth of the interface remains of the
order of the particle dimension. Yet comparing the ratio of
fluid-crystal to fluid-hard-wall interfacial free energies in 3D
and 4D in Table III shows this not to be universally the case.
To understand the origin of the difference we consider how
the interfacial free energy decreases upon changing a hard
wall into a crystal interface. The core of the reduction comes
from two sources: the crystal planes near the fluid interface
have more free volume than those in the bulk and the inter-
facing fluid requires less �vA than next to hard wall. The
interfacial picture suggested by DFT, where in 3D the bulk
of the interfacial free energy comes from the set of three or
four layers that form the interface, is consistent with both
scenarios �78�. In 3D, the crystal relaxation due to the addi-
tional free volume for interfacial particles has recently been
considered the dominant effect �79�. But an older toy model
by Spaepen ascribes a significant contribution to the fluid
�80,81�. Though our results cannot resolve quantitatively the
relative contribution of the two scenarios, they at least indi-
cate that both are of comparable magnitude �82�. If the crys-
tal modulation alone explained the reduction of the interfa-
cial free energy from the hard wall limit, it should be similar
if not greater in 4D than in 3D, because the reduced Pcoex in
4D allows for more wandering of the interfacial crystalline
particles. Yet the fluid-crystal interfacial free energy is both
proportionally and absolutely larger in 4D than in 3D. The

FIG. 5. Additional volume required for placing a wall through a
simplex. The disk on the left must be pushed back sufficiently �ar-
row� to allow for the wall insertion �vertical line�.
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further reduction of �f−x
coex in 3D must therefore arise from the

relatively good geometrical match between the fluid and the
crystal order at the interface. The crystal surface allows for
more additional microstates in the spacing between the inter-
facial crystal spheres in the 3D fcc lattice than in the 4D D4
lattice. Based on this observation and the almost complete
bond-order parameter mismatch between the 4D crystal
phases and the fluid it is reasonable to describe 4D as com-
pletely geometrically frustrated and 3D as only partially so.

What about higher dimensions? Because the local bond-
order mismatch is already very pronounced in 4D �see Sec.
II B�, it is hard to imagine that higher dimensions could
show any more geometrical frustration than 4D does. Once
the fluid and crystal order distributions stop overlapping sig-
nificantly, the fluid simply does not spontaneously form
structures that easily anchor to the crystal interface. We
therefore expect the coexistence fluid-crystal interfacial free
energy to scale linearly with �f−w

coex, but only for d�4.
Let us consider for a moment the impact of these obser-

vations on 3D polydisperse systems. Increasing polydisper-
sity normally decreases �vA���, as discussed above. The in-
crease of �f−x

coex with polydispersity thus occurs because Pcoex

increases faster �83� than �vA��coex� decreases. Larger Pcoex

and �f−x
coex then lead to a higher free-energy barrier and to a

more rapid increase in nonequilibrium �f−x with supersatura-
tion �84�. The curvature of the crystal nucleus appears to be
a marginal contribution �85�.

E. Classical nucleation theory

In the end, what do these results imply for the crystalli-
zation barrier? The geometrical interpretation for �f−w above
as well as the connection between �f−w and �f−x suggested by
geometrical frustration permit certain predictions. Because
�vA��� does not vanish in high dimensions and because Pcoex

increases with dimensionality, due to the increasing ineffi-
ciency of lattice packings to fill space compared to simplex-
based fluids, we expect �f−x

coex to grow with dimensionality. In
the denominator of Eq. �12� the crystal density increases
with dimension, but the cell model provides a lower bound
for the pressure contribution to �f−x that also scales linearly
with density and with a larger prefactor. Because the geo-
metrical prefactor scales as dd/2, the nucleation barrier of
monodisperse hard spheres therefore increases with dimen-
sion. Higher-dimensional crystallization becomes ever rarer,
which explains the surprising stability of supersaturated
monodisperse hard-sphere fluids observed in simulation
�9,21�.

III. CONCLUSION

The modern understanding of geometrical frustration in
hard-sphere fluids considers how much space would need to
be curved to allow for maximally dense simplex-based struc-
tures to form lattices �2,7,8�. Though ultimately this lack of
curvature is the reason why lattices in Euclidean space can-
not be simple assemblies of simplexes, it lacks a direct dy-
namical mechanism to prevent crystallization. This study has
made more precise the role of geometrical frustration in in-
creasing the interfacial free energy between the fluid and the
crystal in monodisperse and polydisperse systems. We have
argued that fluid-hard-wall interfacial free energy is an upper
bound for the fluid-crystal interfacial equivalent, whose scal-
ing behavior is easier to model. We have also argued that
based on the poor overlap between the local fluid and crystal
orders �f−x and �f−w should remain of the same order of
magnitude in high dimension. Put together, these elements
allow us to predict that in high dimensions the free-energy
barrier to crystallization is much larger than in 3D, and there-
fore crystallization is much rarer than in 3D. The crystal thus
only marginally impacts a supersaturated fluid dynamics in
high dimensions, unless a different type of phase transition
arises �86�. For the regime where that is not the case, higher
dimensional spheres are an interesting model in which to
study phenomena that are ambiguous in 3D, such as jam-
ming, as we saw above, and glass formation �87�.

Why is crystallization then so common in 3D hard
spheres? First, the crystal is sufficiently efficient at filling
space for the coexistence pressure to be relatively low. Sec-
ond, the overlap of the fluid and crystal order-parameter dis-
tributions is significant in 3D, which results in only a mod-
erate geometrical frustration. Three-dimensional space is so
small that all possible cluster organizations, including the
cubic crystal unit cells, are frequently observed in the fluid,
which limits the extent of geometrical frustration. Bernal and
many after him have indeed observed just about any small
polyhedron in hard-sphere fluids �88�. Though the simplex-
based fluid order is preferred, other ordering types are not far
off and can easily be accommodated. Geometrical frustration
in 3D monodisperse hard spheres is thus only partial, be-
cause even the crystal unit cell is sufficiently “liquidlike.”

Finally, our study has shown that many microscopic de-
tails of the interfacial free energy of even the simplest of
systems are mis- or incompletely understood. Any hope to
get a grasp of and control homogeneous and heterogeneous
crystallization in more complex systems is contingent upon
having a better understanding of these fundamental issues.

TABLE IV. Volume functions for the statistical mean-field jamming analysis of Ref. �22�. in higher
dimensions.
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+sin�4 arccos�1 /c��� �2

24�−7�3+4��
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APPENDIX A: LATTICE GENERATING MATRICES

The canonical lattice representations are often given in a
form that simplifies the notation ��25�, Chap. 4�, but does not
necessarily allow for a convenient physical construction for
simulation purposes. The choice of generating lattice vectors
should keep the size of the simulation box commensurate
with the crystal unit cell to a minimum. Dd packings are
checkerboard lattices, which are algorithmically simple to
generate. A4 and A5 are dense packings with generating ma-
trices

�
0 1 0 0

0 1/2 �2/2 1/2
0 0 0 1

�10/4 0 1/4 1/2
� �A1�

and

�
0 1 0 0 0

0 − 1/2 �3/2 0 0

0 0 − �3/3 �6/3 0

�10/4 0 0 �6/4 0

�10/5 0 0 0 �15/5
� �A2�

respectively. E6 is a cut through the E8 generalization of the
diamond lattice, for which we use the generating matrix

�
0 0 0 �3 0 0

0 0 0 0 �3 0

1 1 1 0 0 0

1 − 1/2 − 1/2 0 − �3/2 − �3/2
− 1/2 1 − 1/2 − �3/2 0 − �3/2
1/2 1/2 1/2 �3/2 �3/2 �3/2

� .

�A3�

From these generating matrices we can construct a unit
cell commensurable with a hyper-rectangular simulation box.
The sides of the unit cell ui are obtained by linear combina-
tions of the matrix’ row vectors such that only one nonzero
element remains. The lattice sites located within the unit cell
borders then correspond to the particle positions
within the unit cell. Following this recipe, our A4
unit cell has relative side dimensions l= ��10,1 ,�2,1� with
nu=8 particles in the unit cell, A5 yields
l= ��10,1 ,�3,�6,�15� with nu=120, and E6 yields
l= �3,3 ,3 ,�3,�3,�3� with nu=24.

APPENDIX B: THIRD-ORDER INVARIANT
POLYNOMIALS

For reference, we provide two common 3D third-order
rotationally invariant polynomials w̃m

d �a ,b ,c� for l=4 and l
=6, expressed in inner products as outlined in Sec. I B. The
simple 4D l=4 polynomial is also given.

w̃4
3 = 1 +

3700

109
abc +

8575

109
a2b2c2 − 5�a2 + b2 + c2�

+
490

109
�a4 + b4 + c4� −

4900

109
�abc3 + ab3c + a3bc�

+
875

109
�a2b2 + b2c2 + a2c2� ,

w̃6
3 = 1 +

47187

262
abc +

369117

262
a2b2c2 +

586971

262
a3b3c3

−
21

2
�a2 + b2 + c2� +

7371

262
�a4 + b4 + c4� −

2541

131
�a6 + b6

+ c6� +
2646

131
�a2b2 + b2c2 + a2c2� −

145089

262
�a3bc + ab3c

+ abc3� +
53361

131
�a5bc + ab5c + abc5� −

480249

262
�a4b2c2

+ a2b4c2 + a2b2c4� +
189189

262
�ab3c3 + a3bc3 + a3b3c�

−
4851

262
�a2b4 + a2c4 + b2c4 + b4c2 + a4c2 + a4b2� , �B1�

and

TABLE V. Surface virial coefficients for hard spheres in low
dimensions.

d B�2 B�3

2 1/3 4
9�− 9�3

20

3 � /8 149
1680�2

4 2
15� 4

45�3− 143�3
1400 �2

5 �2 /24 5375
532224�4

6 4
105�2 8

945�5− 1828�3
175,175�4

7 �3 /96 266,977
415,135,720�6

8 8
945�3 4

8505�7− 144,213�3
238,238,000�6

9 �4 /480 1,127,359,391
42,908,324,659,200�8

10 16
10395�4 8

467,775�9− 3,945,351�3
174,271,097,000�8
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w̃4
4 = 1 +

264

5
abc +

768

5
a2b2c2 − 6�a2 + b2 + c2�

+
32

5
�a4 + b4 + c4� +

48

5
�b2c2 + a2c2 + a2b2�

−
384

5
�a3bc + ab3c + abc3� . �B2�

APPENDIX C: STATISTICAL MEAN-FIELD THEORY OF
JAMMING

Using the notation, approach, and approximations of Ref.
�22�, we obtain the theoretical predictions of �MRJ

stat for higher
dimensions. For mechanically stable configurations, the bulk
and contact contributions to the cumulative probability that
the coordinates of all spheres j obey rj /cos � j �c is

P��c� � exp� − 2dV��c�
Vd�1/�MRJ

stat − 1�
+

− 2dS��c�
Sd−1/2 + Sd−2Socc

�
with �see Table IV�

V��c� =� ��c − r/cos ��dr , �C1�

S��c� =� ��r − 1���c − r/cos ��dr , �C2�

Socc = �
0

�/6

sind−2 �d� . �C3�

A self-consistent solution to

1/�MRJ
stat − 1 = − �

0

�

�cd − 1�
dP��c�

dc
dc . �C4�

obtained numerically gives �MRJ
stat .

APPENDIX D: HARD-SPHERE SURFACE VIRIAL
COEFFICIENTS

Using the notation of Ref. �63�, we calculate the virial
corrections to the interfacial free energy between a hard-
sphere fluid and a hard wall. The first two coefficients of the
expansion

B�2 = I21
d /2, �D1�

B�3 = I31
d /2 − �2I32

d + I33
d �/6 �D2�

are given in Table V for d�10.
A convenient way to compute these coefficients uses the

volume Vd
cap�h� of a spherical cap of height h on the unit

sphere x1
2+ ¯+xd

2�1. This cap is obtained as the portion
lying above the plane xd=1−h.

We can then compute the quantities of Eqs. �D1� and �D2�
by use of the integrals

I21
d = �

0

1

Vd
cap�z1�dz1, �D3�

I31
d = �

0

1

�Vd
cap�z1��2dz1, �D4�

I32
d = 2Sd−2�

0

1 �
0

r2 �
0

arccos�z1/r2�

Vd
cap�1 −

r2

2
�

� r2
d−1 sind−2 �d�dz1dr2, �D5�

I33
d = − I32

d /2. �D6�

The last result is obtained by noticing that the mirror image
across the z=0 plane of a configuration is also a valid con-
figuration and completes the lens formed by the addition of
two spherical caps. The prefactor accounts for the double
counting.

To compute Vd
cap�h�, we use the spherical coordinates sys-

tem xd=r cos � and �x1
2+ ¯+xd−1

2 =r sin �. Then the cutting
plane xd=1−h intersects the sphere of radius 1 at angle

�h � arccos�1 − h� .

Using the notation Sd−2 introduced in Sec. I D for the surface
of a d−2-dimensional sphere in d−1-dimensional space, we
compute

Vd
cap�h� = Sd−2�

0

�h �
�1−h�/cos���

1

rd−1 sind−2 �drd�

=
Sd−2

d
�

0

�h

sind−2��� −
�1 − h�dsind−2���

cosd���
d�

Recall that for Jd�x���sind�x�dx, we have

J2m�x� =
�2m� ! x

22m�m!�2 − cos�x��
i=0

m−1
�2m� ! �i!�2sin2i+1�x�
22m−2i�2i + 1� ! �m!�2

while

J2m+1�x� = − cos�x��
i=0

m
22m−2i�m!�2�2i� ! sin2i�x�

�2m + 1� ! �i!�2 .

Using this information, we find

Vd
cap�h� =

Sd−2

d
�Jd−2��h� − Jd−2�0� −

�1 − h�dtand−1��h�
d − 1

� .

Note that sin��h�=�h�2−h� and therefore
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Jd−2
h � Jd−2��h� − Jd−2�0� =�

2d−3�d − 3

2
!�2

�d − 2�!
	1 − �1 − h� �

i=0

�d−3�/2
�2i� ! �h�2 − h��i

4i�i!�2 � , if d odd;

�d − 2�!

2d−2�d − 2

2
!�2	arccos�1 − h� − �1 − h� �

i=0

�d−4�/2
4i�i!�2�h�2 − h��i+1/2

�2i + 1�! � ,
if d even.�

APPENDIX E: HEIGHT OF THE CAP CREATED BY THE
INSERTION OF A WALL

In this appendix, we compute the height h of the spherical
cap created by inserting a wall in a densely packed simplex,
which we use to approximate �vA. To simplify the compu-
tation, it is convenient to think of Rd as sitting in Rd+1 as the
hyperplane x1+ ¯+xd+1=1 /�2. Let e1 , . . . ,ed+1 stand for the
usual coordinate basis vector. We put hard spheres centered
at ei /�2. These spheres are all at a distance 1 from each other
and form a d-dimensional simplex. When inserting a wall
tangent to the spheres centered at e1 /�2, . . . ,ed /�2, we cut a
spherical cap from the sphere centered at ed+1 /�2. We wish
to compute the height of this cap.

Let

Pd �
e1 + ¯ + ed

d�2

be the center of mass of the first d balls. Since Pd is at a
distance ��d+1� / �2d� from ed+1 /�2, the wall being inserted
is at a distance ��d+1� /2d− �1 /2� from ed+1 /�2.
So the cap has height �1 /2�− ���d+1� / �2d�− �1 /2��=1
− �1 /�2���1+1d�. Dividing this result by two for the two
interfaces that are created by inserting a wall and taking the
high-dimensional limit, we obtain

�vA �
1

2
�2 − �2� � 0.146447.
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